Optimal design of fixed-point and floating-point arithmetic units for scientific applications
نویسنده
چکیده
The challenge in designing a floating-point arithmetic co-processor/processor for scientific and engineering applications is to improve the performance, efficiency, and computational accuracy of the arithmetic unit. The arithmetic unit should efficiently support several mathematical functions corresponding to scientific and engineering computation demands. Moreover, the computations should be performed as fast as possible with a high degree of accuracy. Thus, this thesis proposes algorithm, design, architecture, and analysis of floating-point arithmetic units particularly for scientific and engineering applications which can be implemented in VLSI. Generally, performance improvements and time efficiency with hardware can be considered from the output rate and the computational latency which is the number of generated outputs per second (output/sec) and the computational times. The output rate can be increased by clock rate whereas the design and architecture of the hardware can improve the computational time, which is mostly focused on engineering practice. Obviously, in order to achieve the highest performance, the design will be based on pipeline architecture. Nevertheless, for any hardware arithmetic unit, not only the performance and time efficiency have to be examined, but also the computational accuracy and stability of the computational results have to be taken into account. Therefore, the floatingpoint arithmetic units introduced in this dissertation will be considered in their design and architecture based on pipeline, and an analysis of the hardware trade-off between the VLSI areas of complexity and computational latency. Meanwhile, the floating-point data representation is employed to improve and stabilize the computational result and accuracy of the arithmetic unit at runtime. The arithmetic units from a hardware point of view can be classified into two groups depending on hardware-based algorithms, i.e. the basic arithmetic unit and the advanced arithmetic unit. The basic arithmetic unit consists of two types of operations corresponding to the number of input operands, i.e. standard operations and non-standard operations. The standard operations are addition/subtraction and multiplication operations and the non-standard operations are product-of-sum and sum-of-product operations. The advanced arithmetic unit is frequently employed in scientific and engineering applications as elementary functions such as sine, cosine, hyperbolic sine, hyperbolic cosine, etc. The two classes of arithmetic units can be derived in hardware-based algorithmic form which is relatively easy for VLSI implementation and for analysis.
منابع مشابه
ASIC Design of Butterfly Unit Based on Non-Redundant and Redundant Algorithm
Fast Fourier Transform (FFT) processors employed with pipeline architecture consist of series of Processing Elements (PE) or Butterfly Units (BU). BU or PE of FFT performs multiplication and addition on complex numbers. This paper proposes a single BU to compute radix-2, 8 point FFT in the time domain as well as frequency domain by replacing a series of PEs. This BU comprises of fused floating ...
متن کاملReducing Latency, Power, and Gate Count with the Tensilica Floating-Point FMA
Today’s digital signal processing applications such as radar, echo cancellation, and image processing are demanding more dynamic range and computation accuracy. Floating-point arithmetic units offer better precision, higher dynamic range, and shorter development cycles when compared to fixed-point arithmetic units. Minimizing the design’s time to market is more important than ever. Algorithm de...
متن کاملTradeoff of FPGA Design of a Floating-point Library for Arithmetic Operators
Most of the engineering and scientific applications involve the implementation of complex algorithms that are based on arithmetic operators [1]. The fixed-point arithmetic allows the computations to be performed with a high precision according to the bitwidth representation. However, many applications require to work not only with a high precision, but also with a suitable format in order to re...
متن کاملDynamical Control of Computations Using the Family of Optimal Two-point Methods to Solve Nonlinear Equations
One of the considerable discussions for solving the nonlinear equations is to find the optimal iteration, and to use a proper termination criterion which is able to obtain a high accuracy for the numerical solution. In this paper, for a certain class of the family of optimal two-point methods, we propose a new scheme based on the stochastic arithmetic to find the optimal number of iterations in...
متن کاملReconfigurable Custom Floating-Point Instructions
Multimedia and communication algorithms from the embedded system domain often make extensive use of floating-point arithmetic. Due to the complexity and expense of the floatingpoint hardware, these algorithms are usually converted to fixed point operations, or implemented using floating-point emulation in software. This study presents the design and implementation of custom floating-point units...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012